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Abstract

We propose new schemes for integrating the stochastic differential equations of dissipative particle dynamics (DPD) in
simulations of dilute polymer solutions. The hybrid DPD models consist of hard potentials that describe the microscopic
dynamics of polymers and soft potentials that describe the mesoscopic dynamics of the solvent. In particular, we develop
extensions to the velocity-Verlet and Lowe’s approaches – two representative DPD time-integrators – following a subcy-
cling procedure whereby the solvent is advanced with a timestep much larger than the one employed in the polymer time-
integration. The introduction of relaxation parameters allows optimization studies for accuracy while maintaining the low
computational complexity of standard DPD algorithms. We demonstrate through equilibrium simulations that a 10-fold
gain in efficiency can be obtained with the time-staggered algorithms without loss of accuracy compared to the non-stag-
gered schemes. We then apply the new approach to investigate the scaling response of polymers in equilibrium as well as
the dynamics of k-phage DNA molecules subjected to shear.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In many systems of soft condensed matter there is often a disparity in time and length scales between the
various components of the system. In simulating polymers, in particular, the primary aim is to investigate the
scaling response of the system without paying much attention to the underlying chemistry. Moreover, the spa-
tiotemporal dynamics for the polymer chains and for the solvent may be substantially different. In highly con-
centrated polymer solutions the hydrodynamic forces due to solvent do not significantly affect the dynamical
properties of the system. However, in dilute polymer solutions the solvent hydrodynamics plays an important
role, possibly causing long-ranged interactions between different parts of the polymer chain [1].

The standard molecular dynamics (MD) method is not effective in simulating such systems due to the
inherent time step limitation of about 10�15 s and the fact that most of the available CPU is typically spent
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in propagating solvent molecules. In order to efficiently simulate this multirate dynamics of dilute polymer
solutions, several hybrid numerical models have been developed in recent years that treat separately the solvent
and the polymer. In the hybrid approach the polymer chains are described at a molecular level by hard inter-
actions whereas the solvent can be described on a simpler level in terms of soft pair potentials or some other
simplified hydrodynamic description. To this end, the authors of [2] combined a lattice Boltzmann method
(LBM) with a continuum molecular dynamics (MD) model for the polymer chain to simulate polymer–solvent
systems. They found that the combined LBM-MD approach achieves a speed-up factor of 20 compared to a
pure MD for comparable accuracy in the results. Similarly, in [3–5] Malevanets and collaborators introduced
a hybrid model consisting of a direct simulation Monte Carlo (DSMC) algorithm for the solvent and MD for
the polymer chain and found good agreement with semi-analytical benchmark results. The proposed method
(called multiparticle collision dynamics or stochastic rotation dynamics) was further used in [6] for two-dimen-
sional polymer chains in good solvent conditions and the dynamical scaling was verified. Furthermore, in [7]
the same technique was used for the study of vesicles under shear.

Dissipative particle dynamics (DPD) is a mesoscopic numerical method introduced in [8], while the studies
in [9] defined the DPD model and allowed applications to emerge. The technique was first employed for sim-
ulating dilute polymer solutions in [10]. The solvent particles represent clusters of actual atoms that interact
pairwise via simple soft potentials. The polymer beads are also represented by particles subject to standard
DPD forces but in addition they exchange momentum with their neighbors according to an elastic spring force
and through other repulsive forces corresponding to hard potentials [11]. In their original work in [10] the
authors report a speed-up factor of 60 compared to the MD simulations reported in [12]. Since that work,
however, several papers have appeared in the literature that present effective time integrators for DPD for
single-phase systems as well as for solvent–polymer systems [11,13–18]. A systematic evaluation of these
time-integrators (with the exception of the new scheme in [17]) was presented in [19] where a hybrid model
for polymers was also investigated, while the authors of [18] presented four variants of the popular veloc-
ity-Verlet algorithm. In DPD simulations the results are timestep dependent for large values of the timestep
but some models, such as Lowe’s scheme [15] (also the scheme in [17]), perform much better than others. A
specific result of interest to the current work reported in [19] is that for the hybrid solvent–polymer system
involving soft–hard potentials the maximum timestep for good accuracy is a factor of 20 smaller than the time-
step for simulating the solvent-only. For example, employing Lowe’s approach, the maximum timestep for the
hybrid system was Dth � 0.02 whereas for the solvent-only it was Dts � 0.4. Accuracy here is measured by
deviations of the observed kinetic temperature ÆkBTæ from the imposed equilibrium temperature of the system.
Moreover, deviations in the polymer chain temperature dominate the deviations in the temperature of the
entire solvent–polymer system even for the dilute system they examined with more than 99.5% of the DPD
particles being solvent particles.

These findings suggest that the hybrid model can be further enhanced if the multirate dynamics of the poly-
mer and solvent are treated separately, i.e., using different timesteps dt and Dt, respectively, to integrate the
DPD governing equations. To this end, in this work we develop a staggered scheme, similar to the subcycling
technique used in classical computational fluid dynamics (CFD) time-integration methods (e.g., semi-
Lagrangian method in advection–diffusion systems, see [20]). In particular, for the DPD equations we will
integrate the solvent (soft potential) with a large timestep Dt while we will perform several substeps for the
polymer (hard potential). A similar approach was used in an earlier work [21] for multiple-timestep MD Ver-
let-type integrators. In order to evaluate this approach, we consider two representative time-integrators: the
DPD velocity-Verlet algorithm (vV) [22,11,19] which integrates the standard DPD equations, and also Lowe’s
algorithm which provides an alternative approach [15]. We have to note that although the latter does not dis-
cretizate the DPD equations, the modified approach presented in [17] does.

A typical system we will consider in this work is shown in Fig. 1; it consists of a few chains (large particles)
representing the polymer beads and smaller particles representing the solvent. A sketch of the corresponding
potentials that govern this system is shown in Fig. 2. The standard time-integrators employed in MD simu-
lations are not applicable to this system due to the random and dissipative forces, in addition to the conser-
vative forces, present in the equations of motion. In particular, the dissipative forces depend on the velocity
and this makes the equations of motion nonlinear. This, in turn, implies that a sub-iteration should be
employed in order to produce a consistent time-integration scheme otherwise numerical artifacts are produced



Fig. 1. Polymer chains (tethered spheres) suspended in a solvent of DPD particles (smaller dots).
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Fig. 2. Lennard-Jones potential and the soft-repulsive potential which results after averaging.
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[13,19,23]. This problem is especially pronounced in the absence of conservative forces, e.g. in simulating the
so-called dissipative gas. Here, we model the solvent as liquid throughout the work, so we will make use of a
modified velocity-Verlet algorithm (vV) proposed by Groot and Warren that does not include a sub-iteration.
Instead, it introduces a relaxation parameter, k, which is used to minimize integration errors in the DPD
system.

Motivated by the success of Groot and Warren’s approach, we introduce in the present work a family of
new relaxation parameters in various sub-steps involving predicting–correcting action in the time-integration
of the polymer–solvent system. We then perform systematic numerical simulations of the system shown in
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Fig. 1 at equilibrium conditions in order to determine the best values of the relaxation parameters. After com-
pletion of such accuracy tests, we apply the new staggered algorithms in order to quantify the scaling of the
radius of gyration of flexible polymer chains described by different polymer models and hard potentials. We
also investigate the accuracy and robustness of the new time-integrators in simulating the response of k-phage
DNA molecules under shear, and we compare our findings with available experimental results.

The paper is organized as follows: in Section 2, we summarize the standard governing equations, and in
Section 3 we give an overview of the polymer models that we will employ. In Section 4, we present the stan-
dard and staggered time-integrators based on the velocity-Verlet and Lowe’s schemes. In Section 5, we present
the various simulation tests we performed and obtain a set of optimum values for the relaxation parameters we
introduced in the two time-integration schemes. In Section 6, we present results of the computational complex-
ity of the method. In Sections 7 and 8, we show results from the two aforementioned applications, and we
conclude in Section 9 with a brief summary.
2. The DPD equations

We consider a system of N particles, each having mass mi, whose momenta and position vectors are gov-
erned by Newton’s equations of motions. In particular, for a typical particle i
vi ¼ _ri; ð1aÞ
Fi ¼ mi _vi; ð1bÞ
where d/dt is denoted by overdot, vi is the particle velocity, ri its position vector and Fi the net force. Through-
out this work we choose mi = 1. The interparticle force Fij exerted on particle i by particle j is composed of
conservative ðFc

ijÞ, dissipative ðFd
ijÞ and random ðFr

ijÞ components. Hence the total force on particle i is given
by
Fi ¼
X
i6¼j

Fc
ij þ Fd

ij þ Fr
ij. ð2Þ
The above sum acts over all particles within a cutoff radius rc above which the forces are considered negligible.
This interaction radius is set to rc = 1 and defines the length scale of the system. Denoting rij = ri � rj, vij =
vi � vj, rij = |rij| and the unit vector eij ¼ rij

rij
we further define each of the forces to take the following form:
Fc
ij ¼ F ðcÞðrijÞeij; ð3aÞ

Fd
ij ¼ �cxdðrijÞðvij � eijÞeij; ð3bÞ

Fr
ij ¼ rxrðrijÞnijeij; ð3cÞ
where nij are symmetric Gaussian random variables with zero mean and unit variance and r, c are not inde-
pendent, as shown below. Newton’s equations of motions govern each particle’s motion through
dri ¼ vidt; ð4aÞ

dvi ¼
Fc

i dt þ Fd
i dt þ Fr

i

ffiffiffiffi
dt
p

mi
; ð4bÞ
where the factor
ffiffiffiffi
dt
p

appears because the random forces are interpreted as Wiener processes.
The conservative force Fc

ij is similar to that in the MD formulation. It can be any force derivable from a
predefined potential and can be tailored to each individual simulation problem. Possible choices include elec-
trostatic forces, spring-type (Hookean, FENE), van der Waals, hard repulsions (Lennard-Jones) or soft repul-
sions (potential pre-averaged forces in the spirit of [24]). Hence, Fc

ij is not constrained or defined by the DPD
equations. This force as well as the other two act within a sphere of radius rc, which defines the length scale of
the system; it corresponds to a soft repulsive-only interaction potential. By averaging the Lennard-Jones poten-
tials or the corresponding molecular field over the rapidly fluctuating motions of atoms over short time inter-
vals, an effective average potential is obtained of the form shown in Fig. 2. A linear approximation of this is as
follows [11]:
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F ðcÞðrijÞ ¼
aijð1� rij

rc
Þ if rij 6 rc;

0 if rij > rc.

�
ð5Þ
Unlike the hard Lennard-Jones potential which is unbounded at r = 0, the soft potential employed in DPD has
a finite value aij at r = 0. The dissipative and random forces, on the other hand, are characterized by strengths
xd(rij) and xr(rij) coupled by the fluctuation–dissipation relations [9]
xdðrijÞ ¼ ½xrðrijÞ�2 ¼
1� rij

rc

� �2

if rij 6 rc;

0 if rij > rc;

8<: ð6aÞ

r2 ¼ 2ckBT . ð6bÞ
3. Models for polymers

Unlike the MD equations, the DPD equations are stochastic and nonlinear since the dissipative force
depends on the velocity. In particular, for complex fluids the presence of both soft and hard potentials suggests
the use of time-staggered algorithms for integrating the DPD equations of motion. This allows the efficient
study of polymeric physical quantities, such as the radius of gyration of the polymeric chain. The conservative
forces present in the usual DPD equations can be tailored in such a way so as to describe a variety of inter-
actions, e.g., Lennard-Jones (LJ), Hookean dumbells, Finitely extensible nonlinear elastic (FENE) springs and
van der Waals forces – as long as they are derivable from a given potential V(rij). Fig. 2 illustrates the need for
two different temporal resolutions: the Lennard-Jones (LJ) potential (for bead–bead pairs) is a hard repulsion
that requires a timestep much smaller than the soft interaction forces of a typical DPD particle pair, which can
be thought of as an averaged soft potential.

The polymeric chains consist of beads (DPD particles) subject to the standard DPD forces: soft repulsive
(conservative), dissipative and random. In addition to these forces, they are subject to intra-polymer forces,
arising from different combinations of the following types:

� Lennard-Jones repulsion. The repulsion for each pair of bead particles is given by the shifted LJ
potential
LJ ¼ 4�
L
rij

� �12

� L
rij

� �6

þ 1

4

" #

truncated to act only for pairs with rij < rc. We set � = kBT, L = 2�1/6 and rc = L · 2�1/6 = 1. We note that
the LJ potential used here is defined at the mesoscopic level to improve polymeric self-avoidance; softer
repulsion rules are an alternative approach [25].
� FENE spring. Within a chain of M beads each bead is subject to a pairwise nonlinear spring force. The

finitely extensible nonlinear elastic (FENE) spring has a maximum extensibility rmax beyond which the force
becomes infinite, and hence any length greater than rmax is considered unphysical and is not allowed. The
potential is described by
FENE ¼ �
j
2

r2
max log 1� j~ri �~ri�1j2

r2
max

" #
; where i ¼ 2; 3; 4; . . . ;M
and j the spring constant.
� Marko–Siggia worm-like chain. Polymer models of biological importance (DNA, proteins) have been

known to be governed by stiff interactions. The worm-like chain [26–28] can be thought of as a continuous
curve in three-dimensional space. Of importance is the persistence length kp, which is a measure of the
chain’s stiffness and is the average length over which the orientation of a curve segment does not change
(‘‘persists’’). We will focus on the bead-spring representation of the model, which approximates a portion
of the worm-like chain with a force law given by the Marko–Siggia [29] expression
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cÞ ¼ kBT
kp

1

4ð1� RÞ2
� 1

4
þ R

" #
; where R ¼ j~ri �~ri�1j

Lspring

¼ r
Lspring

i ¼ 2; 3; 4; . . . ;M
and Lspring is the maximum allowed length for each chain (spring) segment. The expression is accurate for
large values of the ratio

Lspring

kp
and exact as r! 0 or r! Lspring.

The inter-bead force in each case is Fp = �$U. Note that the bonded interactions (spring forces) are pair-
wise but act only between consecutive beads in a chain (i.e., bead number i exerts spring forces on beads i � 1,
i + 1) only, whereas the non-bonded interactions, like the repulsive LJ force, act in a pairwise fashion that
depends on the instantaneous relative position of the beads. This fundamental difference requires neighbor-
search routines for the latter.

The Marko–Siggia spring law is an averaged quantity, locally approximating flexible rods. The deriva-
tion of the formula accounts for coarse-graining microscopic elements of a long chain (such as bead-rod),
by use of statistical mechanics. However, in order to use the Marko–Siggia law in molecules with more
than two beads (dumbbells), some authors [30] account for the different stiffness of the beaded counter-
parts by altering the persistence length kp of the sub-chains. Detailed analysis of such arguments [31]
has shown that it is possible to minimize the errors arising by the introduction of beads and sub-chains.
Throughout this work we will adopt the analysis presented in [31] for stained k-phage DNA molecules
assumed to have L = 21.1 lm (fully extended length) and kp = 0.053 lm (persistence length). The correc-
tion we will apply will linearly approximate the ratio of effective to true persistence length, for three dif-
ferent regions of the extension: low force, half-extended spring and high-force regimes. More specifically,
we define the ratio
kH ¼ kp½EFFECTIVE�
kp½TRUE�
so that when kw = 1 no correction is applied. The tables in [31] suggest a high, medium and zero correction for
the low-force, half-extension and high-force regions, respectively. We go one step further to introduce a linear
fit to the suggested correction values for M-bead chains:
kH � ð1:0� ẑÞ � 0:022� ðM � 1Þ þ 1 if M 6 20;

kH � ð1:0� ẑÞ � 0:025� ðM � 1Þ þ 1 if M > 20;
where 0 6 ẑ 6 1 is the instantaneous fractional extension of the whole molecule in the stretching direction. The
above expressions approximate fairly accurately the values given in [31] and are implemented in all instances
of M > 2 for the Marko–Siggia spring force in this work.

In summary, the solvent beads are described by soft DPD interactions only (conservative, dissipative and
random) while intra-molecular interactions between polymer beads include these DPD-type forces but also
combinations of the above bonded and non-bonded interactions.
4. Time-staggered schemes

The two basic DPD integrating schemes we will consider in this work are: a modified version of the
classical velocity-Verlet algorithm (vV) – as outlined by Groot and Warren [11] – and Lowe’s algorithm
[15,19]. The vV scheme is characterized by explicit calculation of all forces Fc, Fd, Fr (conservative, dissi-
pative and random) and is known to be timestep dependent, but at the same time straightforward and
relatively accurate. Lowe’s method, on the other hand, is a scheme similar to the Andersen thermostat
[32] with the particle velocities corrected every timestep using the Maxwell velocity distribution. In absence
of conservative forces, which are integrated in the vV manner, the scheme is shown to be independent of
the chosen timestep Dt [19], although a recent work [23] has shown that the scheme can give rise to some
minor artifacts. The core operation in Lowe’s method involves re-equilibration of the particle momenta at
one step with an updated inter-particle relative velocity drawn from a Gaussian distribution.
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4.1. Time-staggered velocity-Verlet scheme

The vV DPD scheme relies on a basic predictor–corrector approach, which uses provisional values of the
velocities for the force calculations, which are corrected at the end of each timestep. It is important to keep in
mind that the DPD dissipative forces depend on the relative velocities of the particles, hence this prediction is
crucial. Below we outline the modified vV scheme with parameter k. The theoretical value is k = 0.5 but Groot
and Warren [11] have shown empirically that for a certain range of Dt the optimal value is closer to k = 0.65
when kBT = 1. In this work all results presented use the latter, since our timestep is in the optimal range of

Oð10�2Þ. In the following discussion, we denote the total forces by Fi ¼
P

j6¼i Fc
ij þ Fd

ij þ
Fr

ijffiffiffiffi
Dt
p

h i
and the extra

polymeric forces by Fp
i ¼

P
j 6¼iF

p
ij.

To extend this algorithm for the simulation of complex fluids with soft/hard potentials, a large timestep, Dt,
is employed for solvent particles and a smaller one, dt, for polymer particles belonging to a chain. To this end,
we use provisional values not only for the velocity of the solvent and the polymer, but also the position of the
polymer. The CPU-expensive step of collective force computation is done only once. The velocity and the posi-
tion of the polymer are corrected in the subsequent loop, in which we integrate the polymer particles K ¼ Dt

dt
times in a separate subcycle (using dt for the timestep). The varying polymeric force Fp

i is updated within the
subcycle, following the change in rpi

, the position of the polymer particles. Hence, during the subcycle we
update the intra-polymer forces, but not the inter-particle (total) ones. This would require CPU time for each
subcycle equivalent to a standard one. Although we cannot expect exact agreement of the new scheme with the
classical one, we can anticipate small differences if the ratio Dt

dt is not too large and if the (outdated) forces are
applied in the correct manner during the dt cycle. The algorithm is summarized in Table 1. The proposed
scheme depends on the relaxation parameters l, a, b and k and the subscripts ‘p’, ‘s’ correspond to polymer
and solvent quantities, respectively. It has to be noted that multiple timestep algorithms may be subject to res-
onance, which may significantly limit the longest timestep [21,33]. In the following section, we will investigate
numerically the optimum values for these parameters.
Table 1
Overview of the time-staggered velocity-Verlet approach for a polymer system

K ¼ Dt
dt, l, a, b, k: relaxation parameters

c rsi  rsi þ ðDtÞusi þ
ðDtÞ2
2m Fi Solvent

c r̂pi
 rpi

þ ðDtÞupi
þ ðDtÞ2

2m ðFi þ F
p
i Þ Polymer

x ^̂rpi
 lrpi

þ ð1� lÞ̂rpi
Polymer

c ûsi  usi þ kðDtÞFi Solvent
c ûpi

 upi
þ kðDtÞðFi þ F

p
i Þ Polymer

x ^̂upi
 aupi

þ ð1� aÞûpi
Polymer

c

Solvent, polymer

x
bbF i  bFi þ ð1� bÞbFi Polymer

for k ¼ 0; 1; . . . ;K� 1
rpi
 rpi

þ ðdtÞupi
þ ðdtÞ2

2m ð
bbF i þ F

p
i Þ Polymer

8ði;jÞFp
yi ðrpÞ

Fold ¼ K�k
K

Fi þ k
K
bFi

Fnew ¼ K�ðkþ1Þ
K

Fi þ kþ1
K
bFi

upi
 upi

þ dt
2 ½ðFold þ F

p
i Þ þ ðFnew þ F

p
yi Þ�

Fpi  F
p
yi

c usi  usi þ Dt
2m ½Fi þ F̂i� Solvent

x Fi  bFi Solvent

x Analyzer



Table 2
Overview of the time-staggered Lowe’s approach for a polymer system

K ¼ Dt
dt, l, b: relaxation parameters, C: thermalization parameter

c rsi  rsi þ ðDtÞusi þ
ðDtÞ2
2m Fc

i Solvent

c r̂pi
 rpi

þ ðDtÞupi
þ ðDtÞ2

2m ½F
c
i þ F

p
i � Polymer

x ^̂rpi
 lrpi

þ ð1� lÞ̂rpi
Polymer

c 8ði;jÞbFc
i

rsbbrp

� �
Solvent, polymer

x
^̂
Fc

i  bFc
i þ ð1� bÞbFc

i Polymer

for k ¼ 0; 1; . . . ;K� 1
rpi
 rpi

þ ðdtÞupi
þ ðdtÞ2

2m ð
bbF c

i þ F
p
i Þ Polymer

8ði;jÞFp
yi ðrpÞ

Fc
old ¼ K�k

K
Fc

i þ k
K
bFc

i
Fc

new ¼
K�ðkþ1Þ

K
Fc

i þ kþ1
K
bFc

i
upi
 upi

þ dt
2 ½ðF

c
old þ F

p
i Þ þ ðFc

new þ F
p
yi Þ�

F
p
i  F

p
yi

c "Np distinct pairs i, j such that rij < rc Solvent, polymer
� Generate a Gaussian nij with l = 0, r2 = 1

� Form u�ij � eij ¼ nij

ffiffiffiffiffiffiffiffi
2kBT

m

q
� Generate a uniform distribution wNp

� If wNp
< C� Dt 6 1:

2Dij ¼ eijðu�ij � uijÞ � eij

ui ui + Dij

uj uj � Dij

x Fc
i  bFc

i Solvent, polymer
x F

p
i  bFp

i Polymer

x Analyzer
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4.2. Time-staggered Lowe’s scheme

Introduced in 1999, Lowe’s method [15] is characterized by the explicit calculation of Fc and the subsequent
re-equilibration of all the particle velocities through a Maxwell distribution. This is done using the relative

velocities of the particles. The method conserves momentum and introduces an extra parameter C so that
in the limiting case of C · Dt � 1 thermalization/dissipation occurs every timestep. Peters [17] recently intro-
duced a modification of Lowe’s scheme by keeping the centroid velocity of a particle-pair unchanged before
and after the re-equilibration. This results in an attractive scheme, still independent of the chosen timestep (as
opposed to the Verlet approach) that also discretizes the original DPD equations (Lowe’s method does not).
An overview of the traditional Lowe scheme is given in [19].

The fundamental difference between Lowe’s and the vV scheme is that dissipative and random forces are
not explictly calculated in the former. This feature poses constraints on the construction of the inner dt sub-
cycle. Therefore, we update the conservative solvent forces Fc once per cycle and the conservative polymeric
forces Fp in every subcycle, following the vV approach. The thermalization is done once at the end of the Dt

cycle as shown in Table 2.

5. Accuracy tests

5.1. Metrics and simulation parameters

The accuracy of the methods can be measured by monitoring either the temperature of the thermostat or
other physical quantities, specific to the polymer system, e.g. the polymeric radius of gyration, Rg, or chain
temperature, ÆkBTæ (as proposed in [19]), defined, respectively, as
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hR2
gi ¼

1

M

XM

i¼1

ðRi � RcmÞ2
* +

; hkBT ichain ¼
m

3M

XM

i¼1

u2
i

* +

for an M-bead chain. Here, Ri denotes the position of bead ‘‘i’’ and Rcm the center-of-mass. The presented
schemes depend on l, a, b, k and C. Setting k = 0.65 seems to be an appropriate choice [11] for timesteps
dt � 0.01, while using the arbitrary value of C = 4.5 will only affect the convergence rate of Lowe’s method
and not the accuracy. We adopt the choices outlined in Table 3 for Fold and Fnew of Tables 1 and 2 in the
kth subcycle.

Clearly, the choice of Fold, Fnew determines how the subcycle treats the second velocity update. In the non-
weighted case, we correct the predictions using static values of the old and newly computed total forces. How-
ever, the weighted approach accounts for a linear gradient of them, rendering the ‘‘old’’ and ‘‘new’’ total forces
old and new locally in time within each subcycle dt.

We consider a 4000-DPD particle fluid in equilibrium in a periodic simulation box of dimensions
Lx = Ly = Lz = 10, thus fixing the number density q = 4, with 80 of these DPD particles belonging to four
different chains, 20-beads each, subject to additional FENE and LJ forcing. The different parameters of the
simulation take the following values: the thermal energy level kBT = 1, the mass of each particle m = 1, the
cutoff distance rc = 1, Lowe’s thermalization parameter C = 4.5, the conservative force amplitude aij ¼ 75kBT

q
for both vV and Lowe’s schemes, the random force amplitude r = 3 (this fixes the dissipative force amplitude
to c = 4.5), the FENE parameters rmax = 3rc, j = 7 and the LJ parameters � = kBT, L = 2�1/6,
rc = L · 2�1/6 = 1. We note that the resulting system of polymer forces is relatively stiff, with a timestep
dt � 0.03 being close to the upper limit for stability of the simulation (if we use a non-staggered integrator).
3
s for old and new forces acting on polymer beads
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of Dt. The results also compare the non-weighted schemes with the weighted ones.
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However, using the proposed schemes, we will examine the maximum absolute error for the chain and total
kBT in two regimes: A safe one (Dt 2 [10�3, 10�2], dt = 10�3) and a more ambitious one (Dt 2 [10�2, 10�1],
dt = 10�2).

5.2. The baseline case of l = 0, a = 0, b = 0

We compare the accuracy of the vV and Lowe’s schemes in Fig. 3 for the safe range, while Fig. 4 shows the
maximum temperature error for large Dt. The former can be used as a guideline for the effect of the time-stag-
gering and the error does not exceed 7 · 10�3 even for ratios of K ¼ 10. The latter shows realistic error values
for practical applications of the proposed schemes, reaching values two orders of magnitude larger. These are
precisely the errors we will attempt to minimize in the following sections. Another quantity we will monitor is
the mean radius of gyration ÆRgæ for both schemes. Using the weighted approach, in Table 4 we show the effect
of the timestep ratio on ÆRgæ in the ambitious range for 5-bead chains. The disagreement between the K ¼ 1
and the staggered values never exceeds 2% for the studied range.

5.3. Investigating other choices for l, a and b

The relaxation parameters k, l, a and b of the schemes provide some flexibility in manipulating the predic-
tion of û; ^̂rp; ^̂up and

^̂
F, respectively. For simplicity the following tests will use the non-weighted time-stagger-

ing. Since the timestep dependence in Lowe’s method comes from the conservative forces, we anticipate any
optimal value findings to be directly applicable to the time-staggered Lowe scheme.

We attempt varying l, a and b in the range [�1, 1]. By using values in the open interval (0, 1) we essentially
take a weighted average of the quantity between the prediction at the (n + 1)th step and the old value at the
nth step. In the limiting cases, 0 uses only the prediction while 1 uses only the nth step value. As an additional
test, we also investigate negative values, thus numerically favoring the prediction up to a coefficient of 2. This
disfavors the nth step value, by introducing a negative coefficient. Wider ranges are intuitively unphysical and
will not be considered.

Fig. 5 shows the absolute error in kBT for the chains and the whole system (polymer and solvent particles)
for the system described earlier, i.e. a 4000-DPD fluid with four 20-bead chains governed by FENE and LJ
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Table 4
ÆRgæ dependence on Dt

dt for 5 beads (baseline case with dt = 10�2)

Dt/dt 1 2 4 6 8 10

Verlet 1.0434 1.0410 1.0352 1.0311 1.0345 1.0521
r 0.0762 0.0746 0.0730 0.0732 0.0750 0.0771

Lowe 1.0449 1.0459 1.0389 1.0435 1.0479 1.0531
r 0.0731 0.0730 0.0741 0.0743 0.0724 0.0750

The standard deviation r is mentioned below each case, as an indication of an error bar.
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forces. The error is plotted against the parameter range [�1, 1]. We note that the variation is done with one

parameter at a time, that is, while varying one parameter, the two other parameters are fixed to 0. The ratio K

is fixed to 5, with Dt = 0.005, dt = 0.001, rendering the timestep value safe (recall that stability for the chosen
parameters requires dt < 0.03).

Accuracy in the negative parameter range proves to be worse than the positive one. Moreover, the sensi-
tivity of the system on the variation of l is extremely pronounced. As far as the optimal values are concerned,
the three separate curves indicate that reasonable choices would be either
ðl; a; bÞ ¼ ð0; 0:6; 0Þ or ðl; a; bÞ ¼ ð0; 0; 0:4Þ; ð6cÞ

and these will be separately investigated in the following sections. The total temperature shows an error range
of [0, 2] · 10�3 for all positive values. Hence, error in the polymer chains alone will be the optimal parameter
choice guideline.

Another way of investigating optimal parameter choices would be simultaneous variation of l, a, b in the
same range. Fig. 6 shows that simultaneous variation is a bad choice. Also, setting (l, a, b) = (0, 0.6, 0.4)
simultaneously, still proved to produce an error larger than the baseline (l, a, b) = (0, 0, 0) case.

Equipped with the above indications, we perform the definitive investigative test in the safe range of
Dt 2 [10�3, 10�2], dt = 10�3 for the vV scheme, comparing results for the triplets (l, a, b) =
(0, 0.6, 0),(0, 0, 0.4).
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Summarizing the results for this section, Fig. 7 shows a mild advantage of b = 0.4 for timestep
ratios 2 [2, 7] but a = 0.6 performs better for ratios 2 [8, 10]. Moreover, b = 0.4 depicts a more erratic behav-
ior in the observed range; 1:1 ratio is favored by a = 0.6. Both perturbations from 0 perform, in general, better
than the baseline case. However, the parameter a does not appear in Lowe’s method, which entails that Lowe’s
method can only benefit from b = 0.4. Given all of the above, we conclude that the optimal choice is
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ðl; a; bÞ ¼ ð0; 0:6; 0Þ; weighted staggering: Verlet,

ðl; a; bÞ ¼ ð0; 0; 0:4Þ; weighted staggering: Lowe.
and the convergence under these parameters will be investigated in the following section for the vV and Lowe’s
staggered methods.

5.4. Optimal cases with weighted staggering: safe and ambitious ranges

Revisiting the safe and ambitious timestep ranges, Fig. 8 summarizes accuracy results for both methods
with weighted time-staggering for the chain and total kinetic temperature in the safe range. It serves as a guide-
line on the effect of the time-staggering alone. Both methods prove to perform well even for ratios K ¼ Dt

dt ¼ 10
1
.

The vV scheme shows a more erratic dependence on K on individual polymer chains, but proves to be more
accurate in this dt regime than Lowe’s method as a whole (i.e., for kBTtotal).

The accuracy tests in the ambitious range (see Fig. 9) with the optimal parameters show a clear advantage of
the proposed schemes compared to the baseline case. Even for K ¼ 4, vV and Lowe’s methods produce an
error of {1.9, 4.1} · 10�3, respectively, while the baseline case values are {50.3, 1.8} · 10�3. Clear advantage
therefore is achieved in the vV case for K 2 ½1; 6� while Lowe’s method shows almost the same accuracy for
both the baseline and the optimal cases. Moreover, the dependence on K is now monotonic, an attractive
improvement from the baseline case.

6. Computational complexity

CPU-time savings is the basic motivation for using a time-staggered scheme with two different timesteps.
Fig. 10 summarizes results for four different chains in a 4000-DPD particle simulation, each having 20, 50
and 100 beads. Efficiency depends (among other factors) on how the intra-polymer pairwise interactions
are handled. Since all the forces are pairwise, it is customary not to explicitly compute all the pairs in the
domain, but to introduce neighbor (or cell) lists or boxes and search only in them [34]. This dramatically
reduces the computational cost, which would be quadratic in N (the total number of DPD particles). Although
we use a brute-force method for searching through all the pairs in a chain, an OðM2Þ operation for M beads,
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further improvement can be achieved by using a linked-list method for the polymer chain, as is done for the
solvent. This would be beneficial only for large chains. If we consider a staggered simulation of {Dt, dt} time-
steps, the speed-up of the method is defined as the ratio
Fig. 10
FENE
speed-up¼ ½total CPU-time for adt simulation�
½total CPU-time to advance to the same solution time for a hybrid staggeredfDt;dtg simulation�:
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. Speed-up results versus Dt
dt for the vV method for a 4000-DPD particle fluid. The polymer beads interact with each other through a

force and a pairwise LJ hard repulsion. The results for Lowe’s method show minimal difference.
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The chosen polymer force influences the speed-up, since LJ interactions require calculations of all possible pair
combinations, while spring forces alone do not. Fig. 10 the speed-up for vV, while the results for Lowe’s
method show minimal difference. The speed-up is almost linear in dilute solutions with polymers formed by
shorter chains. Larger chains show reduced (sub-linear) speed-up. In our example of brute-force pair searching
for 100-bead chains, we still achieve a speed-up of 8 for Dt

dt ¼ 10. We expect the schemes to show reduced effi-
ciency only for the special case of non-dilute solutions of large polymer chains. In that case results could be
further improved by introducing an extra neighbor list for bead–bead force calculations. If non-bonded inter-
actions are present, the latter might not even be necessary.
7. The static exponent m

Since our DPD hybrid models represent, in effect, dilute polymer solutions, the dynamics of a single flexible
polymer chain is of great importance for validation and physical understanding of the DPD methods. An early
work by Schlijper et al. [10] has used stiff (Fraenkel) and weak (Hooke) springs, without hard LJ potentials, to
map polymer-chain scaling exponents to the DPD results. Our work introduces more complex (nonlinear)
forces combined with hard repulsions for various spring laws. This serves the double objective of validating
the DPD simulation method as well as introducing novel combinations of interactions (such as the Fraenkel
spring coupled with bead-bead repulsions).

It has been known that ideal chains are characterized by a linear relation between force and elongation, and
exhibit the phenomenon of phantom collisions, i.e., polymeric bonds are not restricted from passing through
each other. On the other hand, real chains in good solvents behave like self-avoiding walks on a lattice and do
not exhibit phantom collisions. In simulations this can be achieved by introducing a repulsive force between
beads i, j of the form
FEV
i ¼ �

X
j

o

ori
UEVðri � rjÞ
for excluded volume, given by the gradient of a potential UEV(rij).
Pierre de Gennes [1] considered two critical exponents for a single chain: c, relating to chain entropy, and m,

relating to chain size. An ideal chain has a scaling law of m = 0.5, while a real chain with excluded volume fol-
lows the Flory formula m ¼ 3

dþ2
¼ 0:6, for three dimensions (in fact, the exponent for a self-avoiding random

walk is closer to m � 0.588). DPD simulations of linear chains [10] have shown a close mapping to the 0.5 expo-
nent, which in turn relates to the continuum Zimm model of harmonic springs [35], while some works, e.g. [36],
have recovered m � 0.6 by manipulating solvent characteristics. In other words, Rg for ideal chains scales as
Rg / ðM � 1Þ0:5;

while measurements of scattered light intensity versus angle verify [1] the chain size power law to be
Rg / ðM � 1Þ0:6.
To appreciate the practical potential of both the vV and Lowe time-staggered schemes in equilibrium we
compute the static scaling law for K ¼ Dt

dt ¼ f1; 6; 10; 20g in the ambitious range Dt = {0.01, 0.06, 0.1, 0.2},
dt = 0.01 for the FENE and LJ with rmax = 3rc. The close agreement of m depicted in Fig. 11 for this sample
stiff polymeric system demonstrates the advantages in using such an algorithm: We obtain an almost linear
speed-up (depending on the number of polymer chains present) in CPU-time, with negligible accuracy devi-
ation in a timestep regime up to Dt = 0.06, i.e., three times the maximum timestep (Dt � 0.02) for comparable
accuracy if we had used a traditional integrator.

For the vV scheme K ¼ 20 is not an attainable value, since the scheme is inherently dependent on the cho-
sen timestep and Dt = 0.2 is already large, even for non-polymer, non-staggered systems. This is a ‘‘normal’’
deviation in accuracy due to discretization errors. Hence the maximum ratio we examine is K ¼ 10. For this
value the observed solvent temperature is 23% higher than the set value, thus over-heating the polymer chain,
rendering the radius of gyration larger. However, the static exponent still scales reasonably compared to the
most accurate values of K ¼ f1; 6g. Lowe’s scheme, on the other hand, shows smaller sensitivity to Dt; K ¼ 10
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produces a kBT error 	1%, but reaching K ¼ 20 is enough to show a significant deviation of 31% from the set
temperature; similar over-heating effects on the polymer chain are observed.

8. Shear response of wormlike chains

Lowe’s method provides a powerful alternative integrator to the vV scheme. The results presented in this
section aim to simulate the response of k-phage DNA molecules under steady shear, and compare the DPD
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results with results from Brownian dynamics (BD) and experimental data. The wormlike chain (WLC)
described in Section 3 is used for all DNA simulations for which Underhill and Doyle’s [31] persistence length
(kp) correction always applies to our results for M > 2. Bouchiat’s [37] correction for the dumbbell case pro-
duced statistically similar results to the original Marko–Siggia (M–S) model. Since the kp correction studies in
[31] were done with the M–S formula, we do not use Bouchiat’s version.

DNA molecules under steady shear have been extensively studied in experimental [38] and computational
[39,25] works. Using DPD we investigated the dynamics of a single WLC. The moving boundaries at y = 0,
y = Ly are modeled using Lees–Edwards boundary conditions [40]: particles leaving the domain at y = 0, Ly

are advanced/retarded by an increment of Dr = Uxt, �Uxt, respectively, in the x-direction, where t is the time
elapsed from an appropriate origin of times and Ux denotes twice the shear velocity of each boundary. More-
over, the velocity of the particle is increased/decreased by Ux, �Ux, accounting for both the imposed bound-
ary condition and the velocity discontinuity between the two walls. This correction is essential, since the
dissipative forces depend on the relative pairwise velocities. The rest of the boundaries are treated periodically
for all the solvent DPD particles. To avoid unphysical periodicity artifacts, polymer beads only undergo an
elastic collision in the y-direction: (u, v, w)BEAD! (u, �v, w)BEAD and ry! ry � (Dt)vBEAD. Different chain
sizes were accommodated by storing the polymer coordinates without mapping them back in the original
domain. This allowed the intra-polymer forces to be calculated properly, while the collective solvent–solvent
and polymer–solvent interactions were calculated with the mapped (periodic) images. The effect of the simu-
lation box size Lx · Ly · Lz for the presented results was investigated and proved to be negligible. For the
results shown, a periodic box of dimensions 10 · 20 · 5 was used in a fluid of 4000-DPD particles. The con-
servative force amplitude was fixed to aij = 75kBT/q, as in [11].

In order to properly simulate k-phage DNA molecules under steady shear, we define the dimensionless Weiss-
enberg number of the flow as We ¼ _cs, for a shear rate _c. Here, s is the polymer’s longest relaxation time, which
has been known to be computed by fitting an exponential analytical curve to the average mean-square extension
(we note that this is not necessarily the end-to-end value.) This approach provides a relaxation time nearly the
same (within 10%) with that obtained by fitting the late-time tail of the mean-square radius of gyration hR2

gi.
Fig. 12 shows the fitted results. The calculated mean-square extension of an initially 30%-extended chain

was fitted with hx2i ¼ hx2i0 þ x2
i e�t=s to obtain the chain relaxation time s. Here, x2

i is the initial stretch and
Æx2æ0 is the equilibrium value. Equating the area under both curves fixed the free parameter of the fit.
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Fig. 12. Decay of the average mean-square extension Æx2æ and the corresponding exponential fit for a wormlike chain of 5 beads in a
Newtonian solvent using Lowe’s non-staggered method.
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Non-equilibrium configurations present an additional challenge on the performance of the integrating
schemes. In order to demonstrate the accuracy of the proposed algorithms, we examine the effect of two dif-
ferent timesteps on physical quantities such as the mean maximum projected molecular extension under steady
shear. Having established a satisfactory performance of Lowe’s method with K ¼ 6; 10 in equilibrium, Fig. 13
demonstrates the performance of the method for the same timestep ratios under shear for a 5-bead WLC, and
compares the results with BD [39] and experimental data [38]. The time-staggered scheme produces a slightly
larger molecular extension Æxæ for K ¼ 6 with a maximum disagreement not more than 10�2, an extremely
attractive result for all practical purposes, given the (almost linear) CPU savings. However, K ¼ 10 shows
some deviation of the monitored averaged quantity, with a 7% disagreement at the high Weissenberg number
regimes. The limitations of the proposed schemes under shear are clear; non-equilibrium configurations
impose extra constraints on the value of K while the errors become apparent at high shear rates.

9. Summary and discussion

Dissipative particle dynamics (DPD) is an attractive alternative to Brownian dynamics (BD) in simulating
polymeric solutions. It is momentum preserving and Galilean invariant; it involves two-way coupling between
the polymers and solvent, and can be used in complex-geometry domains. The computational cost scales lin-
early with the number of particles if the DPD algorithm is properly implemented, hence very large systems can
be simulated on serial computers. The use of hard potentials, however, to describe the microscopic dynamics
of the polymers limits substantially the timestep in integrating the stochastic differential equations of motion.
Specifically, the typical timestep in polymer systems using the standard available algorithms is about 20 times
smaller than the timestep employed in single-phase simulations. The time-staggered algorithms proposed in
the current work relax this constraint as they allow greater timesteps, i.e., by about a factor of 10 for the veloc-
ity-Verlet algorithm and by a factor of 20 for Lowe’s method.

Specifically, we have developed parametric families of time-staggered schemes for integrating the DPD
equations by introducing several relaxation parameters, and sought to determine their best values via equilib-
rium simulations of dilute polymer solutions. These relaxation parameters allow enhanced accuracy in the
numerical solutions without the need of re-evaluating the hydrodynamic forces many times which would
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increase the computational cost in an unfavorable way. This approach was successfully implemented for sin-
gle-phase DPD simulations by Warren and Groot [11] and motivated the current work. The time scale sepa-
ration introduced by the soft potential for the solvent and the hard potential for the polymers allows the
effective use of a subsycling, in a spirit similar to macroscale CFD in advection–diffusion systems where advec-
tion may be advanced with small timesteps with explicit integrators whereas diffusion is typically advanced
with larger timesteps via implicit time-integrators.

The velocity-Verlet (vV) algorithm we considered here integrates the standard DPD equations that involve
conservative, dissipative and random forces. Lowe’s alternative method, on the other hand, involves only con-
servative forces and achieves thermodynamic equilibrium by re-equilibration of all the particle velocities
through a Maxwell distribution. Lowe’s method is faster than the vV algorithm, and as we have demonstrated
herein, it uses almost twice as large timesteps compared to vV for comparable accuracy. Another important
advantage of Lowe’s method relates to the value of Schmidt number, Sc, which can be controlled through the
parameter C (see Table 2). Lowe [15] has argued that Sc � C2, and this has been verified via systematic DPD
simulations in [41]; for typical liquids the value of Schmidt number is about 1000. In the vV algorithm the
value of Schmidt number is around one for kBT = 1, see [11,41]. We note, however, that in time-staggered
algorithms the value of the parameter C should be kept the same as in the standard time-integrators in order
to achieve the same value of Schmidt number in both cases. This is because the diffusion coefficient scales as
1/C and it is approximately independent of the size of the timestep despite the fact that the product C · Dt

controls the thermalization process in Lowe’s method [41].
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